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Abstract. Using the pole approach we determine the mass and width of the f0(980); in particular, we
analyze the possibility that two nearby poles are associated to it. We restrict our analysis to a neighborhood
of the resonance, using ππ data for the phase shift and inelasticity, and the invariant mass spectrum of
the J/ψ → φππ, φKK̄ decays. The formalism we use is based on unitarity and a generalized version of
the Breit–Wigner parameterization. We find that a single pole describes the f0(980), the precise position
depending upon the ππ data used. As a byproduct, values for the gf0ππ and gf0KK̄ coupling constants are
obtained.

1 Introduction

According to the Review of Particles Physics [1], the mass
of the f0(980) scalar resonance is 980 ± 10 MeV whereas
the width ranges from 40 to 100 MeV. The reasons for
such an uncertainty in the width are the great amount
and variety of the experimental data and the different ap-
proaches used to extract the intrinsic properties of the
resonance. To these points we could also add the lack of
a precise definition of what is meant by mass and width,
although there seems to be consensus in using the pole
approach, where the mass and width of the resonance are
found from the position of the nearest pole in the T -matrix
(or equivalently, the S-matrix). However, even if this ap-
proach is adopted the final results differ on the number,
location and physical interpretation of the poles. This is
because the pole approach is not enough to completely fix
the framework needed to perform the resonance analysis;
in fact there are different formalisms that made use of it.
An example is field theory, where a finite imaginary part
of the propagator arises after Dyson summation of the
one-particle-irreducible diagrams contributing to the two-
point function. Unitarity also implies a general complex
structure of the T -matrix in terms of which the pole ap-
proach becomes relevant to define the mass and width of
the resonance. However, the general solution to the unitar-
ity constraint has no implications regarding the number
and/or locations of the poles. Thus, most analyses using
the pole approach must involve further assumptions.

Far from physical thresholds, the identification of the
mass and width of a resonance in terms of the nearest pole
in the T -matrix is not ambiguous. However, when the res-
onance lies in the vicinity of a threshold this identification

is not so obvious and more than one single pole can be re-
quired for a correct description of the resonance (see for
example [2]). This could be the case for the f0(980) whose
mass is very close to the KK̄ threshold. In [3], Morgan
and Pennington (MP) use a formalism general enough to
avoid any assumption about the number of poles associ-
ated to a resonance. For the particular case of the f0(980),
their exhaustive analysis leads to the conclusion that the
f0(980) is most probably a Breit–Wigner-like resonance
– with a narrow width Γ ∼ 52 MeV – which can be de-
scribed in terms of two nearby poles (in the second and
third sheets). Moreover, the precision data coming from
J/ψ → φ(MM) decays, where (MM) stands for ππ or
KK̄, play an essential rôle as a crucial check in favor
of the two-pole description of the f0(980) and disfavor
the cases with one or three poles. These results indicate
that the description of the f0(980) using a Breit-Wigner
parametrization seems to be appropriate and should give
results similar to those in [3,5]. However, an existing anal-
ysis using a Breit–Wigner parametrization performed by
Zou and Bugg (ZB) [4] concludes that the f0(980) is most
likely a resonance with a large decay width (∼ 400 MeV)
and a narrow peak width (∼ 47 MeV). Later on, MP [5]
and ZB [6] have both confirmed their former results, leav-
ing the agreement between the two approaches as an open
question.

The pole approach formalism has been successfully
applied to hadronic resonances such as the ρ(770) [7–9]
and the ∆(1232) [10]. An important advantage of this
formalism is that it yields process and background in-
dependent results. This background independence is only
valid if other resonances are not present within the kine-
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matical region under consideration1. Thus, if one insists
on this point, as we will, it is important to restrain the
analysis to a neighborhood of the resonance under study.
Due to the previous consideration, we exclude from our
analysis of the f0(980) the central production data pp →
p(ππ,KK̄)p [11–16], which covers a much wider energy
range and whose phenomenological description requires
not only ππ and KK̄ scattering but also a production
mechanism involving many parameters. We also exclude
the experimental data on J/ψ → ω(ππ,KK̄) decays be-
cause the f0 signal is too weak [17,18]2 and the inclusion
of these data in the fit would require further parameters3.

Our purpose in this work is to extract the mass and
width of the f0(980) scalar resonance using the pole ap-
proach. As a byproduct, we also obtain values for the cou-
pling constants gf0ππ and gf0KK̄ . We suggest that, for
narrow resonances as the f0(980), the complete one-loop
scalar propagator must be used in the pole equation. Thus,
our analysis is based on a generalized Breit–Wigner de-
scription of a scalar resonance coupled to two channels,
not only satisfying unitarity but also including loop ef-
fects. As far as the pole is concerned, we pay special at-
tention to the possibility of describing the f0(980) in terms
of more than one pole, a phenomenon which is known to
occur when the mass of the resonance is close to a thresh-
old. Nevertheless, it is worth remarking that the need of
two poles is not guaranteed; it strongly depends upon the
precise value of the renormalized mass of the resonance
and its coupling constants to the two channels.

Values of the renormalized mass mR and the coupling
constants gf0ππ and gf0KK̄ are obtained from a fit to ex-
perimental data including the ππ phase shift and inelastic-
ity as well as the J/ψ → φππ(KK̄) invariant mass spec-
tra. We then look for poles in the four Riemann sheets
associated to a resonance coupled to two channels. Our
conclusion is that the f0(980) can be described in terms
of a single pole whose precise position depends upon the
ππ data used (see (19) of the main text for details).

2 Formalism

Before discussing the formalism used for the particular
case of the f0(980), it is convenient to briefly summa-
rize two well-known definitions of mass and width of a

1 The amplitude associated to a given resonance is not ex-
pected to describe the physics in a large kinematical region
(compared to the width of the resonance) where additional
resonances can exist

2 After submission of this manuscript the BES Collaboration
has confirmed these results [19]

3 A phenomenological analysis of the J/ψ → V S decays as-
suming U(3) symmetry predicts that for ideally mixed scalar
and vector states the values of the relevant coupling constants
are gJ/ψφf0 = gJ/ψωσ = 1 and gJ/ψωf0 = gJ/ψφσ = 0. The
small departure from ideal mixing of the φ and the f0 states
explains, in a first approximation, the importance of the f0
contribution to the J/ψ → φ(ππ,KK̄) decays and, on the
contrary, the minor rôle played in the J/ψ → ω(ππ,KK̄) de-
cays [20]

given resonance, both widely used in the hadron physics
literature (see [10] and references therein). One definition,
known as the conventional approach, is based on the be-
havior of the phase shift of the resonance as a function of
the energy, while the other, known as the pole approach, is
based on the pole position of the resonance, which as dis-
cussed in the introduction includes several approaches. We
will not consider here the powerful formalism developed
in [3] since it goes beyond a Breit–Wigner-like description
of the resonance, to which our analysis is restricted. In
this sense, it is worth noticing that these more powerful
methods provide further support to the Breit–Wigner de-
scription of the f0(980). Thus, the analysis carried in this
paper is more restricted in scope, although it turns out to
be general enough for the f0(980) case.

In the conventional approach, the mass and width of
the resonance are defined in terms of the phase shift δ as4

δ(s = M2
δ ) = 90◦, Γδ =

1
Mδ

[
dδ(s)
ds

]−1

s=M2
δ

, (1)

respectively. Since the phase shift is extracted from direct
comparison with experimental data, the decay width de-
fined in this way is usually called the visible or peak width.
For an elastic Breit–Wigner (BW) resonance the phase
shift is chosen as5

tan δ(s) = −MδΓδ(s)
s−M2

δ

, (2)

which leads to the partial-wave amplitude

a =
e2iδ − 1

2i
= − MδΓδ(s)

s−M2
δ + iMδΓδ(s)

, (3)

where s is the center-of-mass energy squared.
In the pole approach (or S-matrix approach), the res-

onance shows up as a pole in the amplitude

a =
R

s− sp
+B, (4)

where the two terms correspond to the resonant and back-
ground contributions separated according to [21,22].
Equation (4) is understood as a power series expansion of
the amplitude around sp, therefore, in order for this de-
scription to make sense, the background around the pole
(which is fixed from the fit to experimental data) should
be a smooth function of s affecting minimally the pole
position. In this approach, the mass and width of the res-
onance are defined in terms of the pole position sp as6

sp = m2
p − impΓp. (5)

4 We use the subindexes δ and p to denote the mass and
width of the resonance in the conventional and pole approaches
respectively

5 A s-dependent width Γδ(s) in (2) is mandatory when a
background around the resonance is assumed [10]

6 The relationship between the mass and width parameters
defined in the conventional and pole approaches can be found
in [10]
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The pole approach provides a definition for the parame-
ters of an unstable particle which is process independent
(independent of the process used to extract them) and also
background independent (different parametrizations of the
background will hardly modify the values obtained for the
pole parameters of the resonance).

In the remaining of this section we pursue the pole
approach for the case of a resonance coupled to two chan-
nels, including furthermore the possibility of a strongly
s-dependent width due to the opening of a second two-
body threshold. Two ingredients are required in order to
build the scattering amplitude to be used in our formalism:
unitarity and the complete one-loop scalar propagator.

Concerning the first of the ingredients, unitarity sets
stringent constraints on the amplitudes needed for the
description of a resonance coupled to several channels.
The correct incorporation of these constraints into the
S-matrix is compulsory for an adequate analysis of ex-
perimental data. The analysis in the general case would
require a model independent approach, as in [3], to deter-
mine the number and location of poles associated to the
resonance. However, previous analyses [3,4] have shown
that the f0(980) can be described in terms of a Breit–
Wigner-like resonance with two poles associated to it. The
Breit–Wigner parameterization is nevertheless a particu-
lar case of an amplitude fulfilling unitarity. Indeed, for a
relativistic particle, the general solution to the unitarity
constraint can be written as [23]

Tab =
e2iδa(s) − 1
2i

√
βaβb

δab − ei(δa(s)+δb(s))
√
βaβb

√
GaGb

F (s) + iG(s)
, (6)

where δa,b stands for the phase shifts describing the back-
ground in channels (a, b), βa,b = (1 − 4m2

a,b/s)
1/2 with

ma,b the masses involved in the two-body decays of the
two channels, F (s) and G(s) are arbitrary real functions
of s, and Gi(s) are positive functions with the property
G(s) =

∑
i=a,bGi(s). Identifying F (s) = s − m2

p and
G(s) = mpΓp, the amplitude (6) reduces in the one chan-
nel case to the amplitude (4) up to an overall normaliza-
tion factor.

The second of the ingredients mentioned above will
be used in our framework in order to identify the func-
tions F (s) and G(s) to the real and imaginary parts of
the complete one-loop propagator respectively. The previ-
ous identification has the advantage of incorporating au-
tomatically threshold effects (see below). This procedure
requires the use of an effective field theory in order to
calculate the full propagator of the f0(980). In general,
effective field theories are of limited use in the description
of hadron physics where one expects the interactions to be
strong. There are cases, however, where these theories can
be used. The treatment of width effects, when the width
to mass ratio (taken as an expansion parameter) is small,
is an example where effective field theories can be useful
for the description of narrow resonances, but not for broad
ones. Notice in this respect that for the f0(980) Γf0/mf0 ≈
0.04–0.1 [1]. Concerning the final form of the scalar prop-
agator, the use of a simple Breit–Wigner parametrization
with constant width, which is applicable only to narrow

resonances far from thresholds, is not enough due to the
closeness of the KK̄ threshold and the f0 mass. Instead,
one could use an energy dependent width, incorporating
the kinematic dependences on the energy, but this ap-
proach amounts to the inclusion of only the imaginary part
of the self-energy. In our analysis, we prefer to use the fully
corrected one-loop propagator, including both the real and
imaginary parts of the self-energy, since this approach al-
lows us to have a consistent description of the analytical
properties, i.e. it provides a proper analytic continuation
of the scattering amplitude below the KK̄ threshold.

After Dyson summation, the propagator of a scalar
particle is [24]

∆(p2) =
i

p2 −m2
0 +Π(p2)

, (7)

where m0 is the bare or tree-level mass of the resonance
and Π(p2) is the one-particle-irreducible (1PI) two-point
function. In the on-shell scheme, a Taylor expansion of
the real part of Π(p2) around the resonance mass allows
one to rewrite the scalar propagator as

∆(p2) =
iZ

p2 −m2
R + imRΓR

+ · · · , (8)

where the renormalized mass mR (the so-called on-shell
mass) and the wave-function renormalization factor Z are
defined as

m2
R = m2

0 − ReΠ(m2
R),

Z−1 = 1 + ReΠ ′(m2
R), (9)

with ReΠ ′(p2) = dReΠ(p2)/dp2. By analogy with a
Breit–Wigner resonance, the width is defined by7

ΓR =
1
mR

ZImΠ(m2
R). (10)

However, this on-shell definition of the resonance width
is inadequate since it vanishes when a two-particle s-wave
threshold is approached from below [2]. Due to the failure
of the Taylor expansion of Π(p2) around m2

R, (10) does
not have the desired behavior for a width properly defined.
This is precisely the case under consideration since the
KK̄ threshold lies in the vicinity of the f0(980) mass.

On the contrary, the pole approach provides a consis-
tent definition of the resonance width that behaves sensi-
bly in the threshold region. In this approach, the Taylor
expansion of Π(p2) is not performed and the scalar prop-
agator (7) is written as

∆(p2) =
i

p2 −m2
0 +Π(p2)

(11)

=
i

p2 −m2
R + ReΠ(p2) − ReΠ(m2

R) + iImΠ(p2)
,

7 This definition applies only to narrow resonances, ΓR �
mR, where ImΠ(p2) can be approximated by ImΠ(m2

R) over
the width of the resonance. If the resonance is broad, the full
energy dependence of Π(p2) must be taken into account
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where m2
R = m2

0 − ReΠ(m2
R). Within the framework of

the pole approach, the scattering amplitude (6) describ-
ing a resonance coupled to two channels is obtained by
identifying the functions F (s) and G(s) with the denomi-
nator of the complete one-loop scalar propagator in (12):
F (s) = s−m2

R+ReΠ(s)−ReΠ(m2
R) and G(s) = ImΠ(s).

This procedure leads to

Tab =
e2iδa(s) − 1
2i

√
βaβb

δab − ei(δa(s)+δb(s))
√
βaβb

×
√
s
√
ΓaΓb

s−m2
R + ReΠ(s) − ReΠ(m2

R) + iImΠ(s)

=
e2iδa(s) − 1
2i

√
βaβb

δab − ei(δa(s)+δb(s))

16π
(12)

× gagb

s−m2
R + ReΠ(s) − ReΠ(m2

R) + iImΠ(s)
,

where Γa,b = g2
a,b/(16π(s1/2))βa,b are the partial decay

widths of the resonance in channels (a, b). The common
relation ImΠ(p2) = (p2)1/2Γ (p2) is not used to avoid con-
fusion (the width of the resonance in the pole approach is
related to the pole position, it is not given by the tree-level
result following from the optical theorem). The renormal-
ized mass mR and the tree-level coupling constants of the
resonance to the two channels ga,b are the parameters to
be fitted when confronting the scattering amplitude (12)
with the data. Once these parameters are extracted from
the experimental data, the pole mass mp and pole width
Γp of the resonance are obtained from the pole equation

D(sp) = sp −m2
R + ReΠ+(sp)

−ReΠ+(m2
R) + iImΠ+(sp)

= 0, (13)

with sp = m2
p − impΓp and Π+(s) ≡ Π(s+ iε). The pole

equation (13) involves a complex function of a complex
variable. If for real s, Π+(s) = R(s) + iI(s), then for ar-
bitrary complex s

Π+(s) = ReR(s) − ImI(s) + i [ImR(s) + ReI(s)] . (14)

In order to find all the poles associated with a resonance
coupled to channels (a, b) we have to look for the poles
of (13) in the four different Riemann sheets defined by
the complex channel momenta pa,b. Following the conven-
tional classification, the sheets are enumerated according
to the signs of (Impa, Impb):

sheet I(+ +) : (Impa > 0, Impb > 0),

sheet II(− +) : (Impa < 0, Impb > 0),

sheet III(− −) : (Impa < 0, Impb < 0),

sheet IV(+ −) : (Impa > 0, Impb < 0). (15)

We restrict ourselves to the case of two-body channels in-
volving particles of the same mass. Thus, the thresholds
for channels (a, b) are 2ma,b and the momenta are de-
fined as pa,b(s) = (s−4m2

a,b)
1/2/2 (ma < mb is assumed).

Since the complete propagator D(s) is indeed an explicit
function of the momenta pa,b, D(s) = D[s, pa(s), pb(s)], a
change in the sign of the imaginary part of the momentum
– a change of sheet – is achieved with the replacement of
pa,b by −pa,b in the propagator. Therefore, the poles are
found solving the following four pole equations:

D[s, pa(s), pb(s)], D[s,−pa(s), pb(s)],

D[s,−pa(s),−pb(s)], D[s, pa(s),−pb(s)]. (16)

For the case of interest, namely the f0(980) scalar res-
onance coupled to a pair of pions and a pair of kaons8,
the real and imaginary parts of the finite part of the 1PI
two-point function Π(s) are

R(s) =
g2

f0ππ

16π2

[
2 − βπ log

(
1 + βπ

1 − βπ

)]

+
g2

f0KK̄

16π2

[
2 − βK log

(
1 + βK

1 − βK

)]
ΘK

+
g2

f0KK̄

16π2

[
2 − 2β̄K arctan

(
1
β̄K

)]
Θ̄K ,

I(s) =
g2

f0ππ

16π
βπ +

g2
f0KK̄

16π
βKΘK , (17)

where βi = (1 − 4m2
i /s)

1/2 for i = π,K, β̄K = (4m2
K/s−

1)1/2, ΘK = Θ(s − 4m2
K), and Θ̄K = Θ(4m2

K − s). It
is worth remarking that the step functions Θ are not in-
troduced by hand but result from the present calculation
and play a crucial rôle in the determination of the pole
structure.

So far we have discussed the framework needed for
the description of a resonance coupled to two channels.
However, there are not current experiments that allow
for a direct comparison of two-particle scattering ampli-
tudes with the experimental data. Therefore, in order to
carry out the numerical analysis one has to rely on pro-
duction processes such as J/ψ → φ(ππ,KK̄) and J/ψ →
ω(ππ,KK̄) or central production in proton–proton scat-
tering pp → p(ππ,KK̄)p. As stated in the introduction,
we will perform our analysis using only the former J/ψ →
φ(ππ,KK̄) decays as a mechanism for producing pairs of
pions and kaons. In this respect, we follow [3] to relate the
production amplitude F , also constrained by unitarity, to
the scattering amplitudes Tab in (12). The corresponding
amplitudes for J/ψ → φ(ππ,KK̄) are then written as

Fπ ≡ F (J/ψ → φπ+π−)

=

√
2
3

[απ(s)Tππ + αK(s)TKπ] ,

FK ≡ F (J/ψ → φK+K−)

8 In our analysis, we work in the isospin limit and there-
fore the mass difference between K0 and K+ is not taken into
account for the KK̄ threshold. The inclusion of this mass dif-
ference would deserve a more refined three channel analysis
with eight Riemann sheets; that is beyond the scope of the
present work
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=

√
1
2

[απ(s)TπK + αK(s)TKK ] , (18)

where the real coupling functions απ,K(s) are parame-
trized as αi(s) = γi0 + γi1s and the γi are obtained from
the fit. Note that the theoretical expression for the ππ
phase shift and inelasticity are obtained from the Tππ

scattering amplitude in (6). The ππ data used in our
fits are extracted from three different experimental anal-
yses, two of them [25,26] based on data from the reac-
tion π−p → π+π−n [29] and the third one [27,28] from
π−p↑ → π+π−n [30] and π−p → π0π0n [31].

3 Numerical analysis

Before proceeding with the numerical analysis we should
keep in mind that our method is based on the pole ap-
proach and thus, in order to obtain a background inde-
pendent fit to the data, we need to restrain ourselves to
a neighborhood of the f0(980) resonance. For this rea-
son we have chosen to work with experimental data on
J/ψ → φπ+π− and J/ψ → φK+K− decays [18,32] and
on the ππ phase shift and inelasticity [25–28] in the range
0.8 ≤ s1/2 ≤ 1.1 GeV. It is worth noticing that within the
kinematical region between 0.8 GeV and the point where
the rising of the ππ phase shift starts due to the appear-
ance of the f0(980), the contribution of the σ scalar reso-
nance to the phase shift in this region can be reasonably
described in terms of an energy polynomial9 (see below).

For the ππ phase shift we have used three different
sets of data. The first two sets differ mainly in the point
lying just around 980 MeV and correspond to solutions B
[25] (including this controversial point) and D [26] (not
including it) of [29]. The last set of data corresponds to
the “down-flat” solution of [27,28] that seems to be the
most preferable solution after a joint analysis of the S-
wave π+π− and π0π0 data [30,31]. In the following we will
denote these three sets of ππ phase shift data as sets B,
D and DF respectively. Part of the differences concerning
the pole parameters of the f0(980) resonance reported in
the literature could be due to the use of different data.
In this work, in order to quantify the influence of the ππ
phase shift used, we have performed fits using the data
sets B, D and DF.

In the data fitting, a background term can be intro-
duced for one or both channels and furthermore differ-
ent energy dependences of the phase shifts can be con-
sidered. In our analysis we have included a background
for the ππ and KK̄ channels both with an energy de-
pendence ranging from constant (δ = b0) to quadratic
(δ = b0 + b1s + b2s

2). For the ππ case, the contribution
of the σ resonance to the background term is included in
this way. For the KK̄ case, only b1 and b2 are indepen-
dent parameters since the background term must vanish

9 Moreover, the choice of using experimental data only
around 980 MeV avoids the need of describing the broad bump
seen in the ππ phase shift around 600 MeV for which a simple
polynomial parametrization is not adequate

Table 1. Values for the parameters obtained from a joint fit
to the J/ψ → φ(ππ,KK̄) decays and the ππ phase shift and
inelasticity. Set B, D or DF refers to the set of ππ phase shift
data used in the fit

Fit set B set D set DF

m2
R (GeV2) 0.966 ± 0.003 0.982 ± 0.001 0.978 ± 0.003

g2
f0ππ

/16π (GeV2) 0.071 ± 0.007 0.065 ± 0.005 0.11 ± 0.01

g2
f0KK̄

/16π (GeV2) 0.25 ± 0.03 0.16 ± 0.01 0.31 ± 0.04

bπ0 1.89 ± 0.09 1.47 ± 0.03 0.49 ± 0.05
bπ1 (GeV−2) −1.1 ± 0.2 1.47 ± 0.09 4.6 ± 0.1
bπ2 (GeV−4) 0.8 ± 0.1 −0.50 ± 0.06 −2.83 ± 0.09
bK1 (GeV−2) 28.7 ± 0.6 15.5 ± 0.3 26.6 ± 0.4
bK2 (GeV−4) −12.6 ± 0.2 −6.8 ± 0.1 −11.5 ± 0.2
γπ0 5.1 ± 0.4 −0.2 ± 0.9 5.0 ± 1.0
γπ1 (GeV−2) −1.5 ± 0.5 8.2 ± 1.0 1.7 ± 1.0
γK0 −27.2 ± 0.5 −39.5 ± 0.7 −21.7 ± 0.5
γK1 (GeV−2) 29.7 ± 0.5 45.0 ± 0.7 26.2 ± 0.6
χ2/d.o.f 1.10 0.87 1.10

by continuity below the kaon threshold. So then, the max-
imum number of parameters of our fits is 12: the renormal-
ized mass mR, the coupling constants gf0ππ and gf0KK̄ ,
the parameters bπ0 , b

π
1 and bπ2 for the background term for

pions, bK1 and bK2 for the kaon background, and the con-
stants γπ0, γπ1 and γK0, γK1 parametrizing the Fπ and FK

amplitudes.
The results of the different fits performed show that

(i) the χ2 improves when a KK̄ background is included,
although changing its energy dependence makes no rele-
vant difference;
(ii) the values obtained for the physically relevant param-
eters (mR, gf0ππ and gf0KK̄) change only a few percent
when different backgrounds are considered. The outcome
of the fit for the case of quadratic backgrounds for pions
and kaons is written in Table 1 and shown in Fig. 1. The
values for the renormalized mass mR, the coupling con-
stants gf0ππ and gf0KK̄ , the χ2 per degree of freedom and
the other fitted parameters are presented for the sets B,
D and DF of the ππ data. Concerning the values of the
coupling constants obtained from the fit, we observe that
the coupling of the f0(980) to kaons is stronger than the
coupling to pions: g2

f0KK̄
/g2

f0ππ = 3.52, 2.46, 2.82 for sets
B, D and DF respectively. Model dependent values for
these coupling constants have been recently reported by
the SND [33], CMD-2 [34] and KLOE [35] Collaborations.
Their analyses, based on the study of the φ → π0π0γ ra-
diative process, give g2

f0K+K−/g2
f0π+π− = 4.6±0.8 (SND),

3.61 ± 0.62 (CMD-2) and 4.00 ± 0.14 (KLOE)10. Other
analyses, based either on pp → p(ππ,KK̄)p central pro-
duction [11] or on f0(980) production in hadronic Z0 decay

10 The coupling constants gf0ππ(KK̄) used in our analy-
sis are related to the more common coupling constants
gf0π+π−(K+K−) and gπ(K) used in experimental analy-
ses by (2/3)g2

f0ππ/4π = g2
f0π+π−/4π = (4/3)gπm2

f0 and
(1/2)g2

f0KK̄
/4π = g2

f0K+K−/4π = gK m
2
f0
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Fig. 1. Fit to ππ data on the phase
shift and inelasticity (cross [26], solid
square [25], solid triangle [27,28]) and
to data on J/ψ → φ(ππ,KK̄) produc-
tion [18,32]. Fits to the data sets B,
D and DF are shown with dotted, dot-
dashed and solid lines respectively

[36], suggest the same behavior for the coupling constants
and obtain gK/gπ = 2.1 ± 0.6 and gK/gπ � 10 respec-
tively. On the contrary, the analysis by the E791 Collabo-
ration [37] on the f0(980) production in Ds → 3π decays
gives gK/gπ = 0.2 ± 0.6. The values we obtain for both
coupling constants and for their ratio are smaller than
model predictions [38–40] and also than previous determi-
nations [41].

Let us now proceed to determine the mass and width
of the f0 resonance within the pole approach. Fits to the
data sets B, D and DF lead to values for the renormal-
ized mass of mR = 983 ± 2 MeV, mR = 991 ± 1 MeV
and mR = 989± 2 MeV respectively. The pole parameters
of the resonance are determined once the values of the
renormalized mass and the ones regarding the coupling
constants (see Table 1) are included in the pole equation
(13). The numerical solution of the pole equation yields
for data sets B, D and DF:

mB
p = 987 ± 3 MeV, ΓB

p = 42 ± 9 MeV,

mD
p = 999 ± 2 MeV, ΓD

p = 39 ± 8 MeV,

mDF
p = 1001 ± 6 MeV, ΓDF

p = 52 ± 16 MeV. (19)

This determination of the pole mass and width of the
f0(980) resonance together with its couplings constants
to the ππ and KK̄ channels constitute the main result of
this work. Our results in (19) are in fair agreement with
several values of the f0(980) pole parameters that recently
appeared in the literature. The values mp = 994 MeV and

Γp = 28 MeV are obtained from an analysis of meson–
meson interactions in a non-perturbative chiral approach
[42]. Similar analyses give mp = 987 MeV and Γp =
28 MeV [43] or mp = 981.4 MeV and Γp = 44.8 MeV
[44]. Other analyses, based on the study of meson–meson
interactions in different coupled channel unitarity mod-
els, give mp = 1015 ± 15 MeV and Γp = 86 ± 16 MeV
[45], mp = 991 ± 3 MeV and Γp = 71 ± 14 MeV [41],
mp = 1008 MeV and Γp = 54 MeV [46], mp = 993.2 ±
6.5 ± 6.9 MeV and Γp ∼ 100 MeV [47] or mp = 1006 MeV
and Γp = 34 MeV [48].

In addition to this result we have also analyzed the
variation of the pole position as a function of the renor-
malized mass mR, i.e. the coupling constants gf0ππ and
gf0KK̄ are kept fixed to their values for set D in Table 1. In
Fig. 2, we show m2

p versus mpΓp, which are related to the
real and imaginary parts of the pole sp, for values of the
renormalized mass in the range 941 ≤ mR ≤ 1027 MeV.
Thus, each point on the plot corresponds to a solution of
the pole equation (13) – in terms of the values obtained
for mp and Γp – for a given value of mR. Only the phys-
ically relevant pole is shown in Fig. 2; complex conjugate
poles or any other kind of poles are not included. In or-
der to generate Fig. 2, we looked for solutions of the pole
equation in each of the four Riemann sheets reaching the
following conclusions.
(1) We did not find a pole neither in sheet I nor IV in
the vicinity of 980 MeV (we looked for poles in the range
960–1020 MeV).
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Fig. 2. Behavior of the pole position (m2
p versus mpΓp) as

a function of the renormalized mass mR in the range 941 ≤
mR ≤ 1027 MeV. The set of points with larger values of |mpΓp|
appearing above 0.975 GeV2 correspond to values of mR >
1020 MeV and are associated to poles in sheet III

(2) We find poles in sheet II in the range 941 ≤ mR ≤ 1027
MeV. From these solutions we see that the pole mass is
always larger than the renormalized mass, i.e. mII

p > mR.
When 4m2

π < m2
R < 4m2

K , we obtain a pole width Γp
that has to be identified with the f0 → ππ decay width.
The width so found does not coincide with the decay
width calculated from the tree-level expression Γf0→ππ =
g2

f0ππβπ/16π(s1/2), the difference arising from the contri-
bution of the ImR(s) term in (14) once s takes a complex
value.
(3) We find poles in sheet III only for mR > 1020 MeV. In
this case, the pole mass is always of the order of 20 MeV
smaller than the renormalized mass, i.e. mIII

p < mR, and
Γp should be identified with the tree-level width Γf0→ππ +
Γf0→KK̄ . Again, this decay width does not coincide with
the pole width for the same reasons as before.

From points 2 and 3 above we conclude that only
one pole in sheet II will be necessary to describe the
f0(980) resonance, since poles in sheet III only appear
for mR > 1020 MeV while our fit to data always yields
mR < 1 GeV. Moreover, these points also indicate that
the overlapping of poles is not possible. The idea of the
overlapping of poles states that values of the renormalized
mass mR close to but below the kaon threshold (mR <
2mK) may lead to values of the pole mass mp above the
threshold (mp > 2mK) and that values of mR close to
but above the threshold (mR > 2mK) may lead to values
of mp below the threshold (mp < 2mK). We stress that
our conclusion is not general; it depends upon the values
used for the coupling constants, in particular on the ratio
g2

f0KK̄
/g2

f0ππ [49].

4 Conclusions

Using a generalized version of the Breit–Wigner para-
metrization based upon unitarity and a propagator ob-
tained from effective field theory including loop contribu-
tions, we have performed a fit to the experimental data on

the ππ phase shift, the inelasticity and the J/ψ → φππ
and J/ψ → φKK̄ decays. The fit has been restricted to
a neighborhood of 980 MeV (0.8 ≤ s1/2 ≤ 1.1 GeV) thus
providing a process and background independent way of
extracting the intrinsic properties (pole mass and width)
of the f0(980) scalar resonance.

The solution of the pole equation for the values of the
parameters resulting from the fit allows us to conclude
that the f0(980) is described in terms of a single pole in
sheet II and yields the values mB

f0
= 987 ± 3 MeV and

ΓB
f0

= 42 ± 9 MeV, mD
f0

= 999 ± 2 MeV and ΓD
f0

= 39 ±
8 MeV, and mDF

f0
= 1001±6 MeV and ΓDF

f0
= 52±16 MeV

for the data sets B, D and DF respectively. We also an-
alyzed the behavior of the pole position as a function of
the renormalized mass mR and found that a pole in sheet
III only arises when mR > 1020 MeV while our fit to the
data yields always values mR < 1 GeV.
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